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Figure 1: Given a single low dynamic range (LDR) image of an outdoor scene (a), compositing virtual objects using traditional
methods such as image-based lighting (IBL, without differential rendering [Debevec 1998]) (b) yields multiple issues such as
incorrect shadow intensity and color (d, umbrella), double shadows (e, beach ball, bunny) that do not blend with the background
(palm tree), and lack of shadows cast onto virtual objects (f, on the beach ball and bunny). Our method (c) addresses these issues
and produces a more realistic composite automatically. Background image by Him Sann TR under free Pexels license.

ABSTRACT
Compositing virtual objects into real background images requires
one to carefully match the scene’s camera parameters, surface ge-
ometry, textures, and lighting to obtain plausible renderings. Recent
learning approaches have shown many scene properties can be es-
timated from images, resulting in robust automatic single-image
compositing systems, but many challenges remain. In particular,
interactions between real and synthetic shadows are not handled
gracefully by existing methods, which typically assume a shadow-
free background. As a result, they tend to generate double shadows
when the synthetic object’s cast shadow overlaps a background
shadow, and ignore shadows from the background that should be
cast onto the synthetic object. In this paper, we present a com-
positing method for outdoor scenes that addresses these issues and
produces realistic cast shadows. This requires identifying existing
shadows, including soft shadow boundaries, then reasoning about
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the ambiguity of unknown ground albedo and scene lighting to
match the color and intensity of shaded areas. Using supervision
from shadow removal and detection datasets, we propose a gen-
erative adversarial pipeline and improved composition equations
that simultaneously handle both shadow interaction scenarios. We
evaluate our method on challenging, real outdoor images from
multiple distributions and datasets. Quantitative and qualitative
comparisons show our approach produces more realistic results
than existing alternatives. Our code, datasets, and trained models
are publicly available at https://lvsn.github.io/shadowcompositing.
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1 INTRODUCTION
Compositing virtual objects into real photographs is a routine task
in applications ranging from advertising to augmented reality and
visual effects. Despite significant progress in automatic scene re-
construction and illumination estimation, realistic composites still
require significant manual work, because fully-automated solutions
(e.g., [Wang et al. 2022]) often lead to mismatching shadows, the
most salient breach to the illusion of realism.

We present a method that harmonizes synthetically rendered
objects and their shadows with the real shadows in a background
image, to automatically create visually plausible composites for out-
door scenes. We specifically target two kinds of errors that plague
most previous work and stem from disregarding existing shadows
in the background image. First, shadows cast by a virtual object that
overlaps with a background shadow should blend seamlessly with
the existing shadow (fig. 1c), rather than create an unrealistic “dou-
ble shadow”, i.e., a non-physical overlap of multiple cast shadows,
causing an over-darkening of the background (fig. 1b,e). Second,
when the virtual object is composited in a shaded area of the back-
ground, it should receive shadows cast by (possibly out-of-frame)
occluders from the background scene. Most methods forego these
received shadows, which leads to an implausible, overly bright ap-
pearance for the composited object (fig. 1b,f). Our algorithm handles
both these object-to-scene and scene-to-object shadow interactions.
Additionally, if spatially-varying ground truth scene illumination
is not available for differential rendering [Debevec 1998], shadow
colors may look inaccurate (fig. 1d). Our algorithm automatically
harmonizes such shadow colors after insertion.

Our approach assumes the composite is an outdoor scene, illumi-
nated by a direct sunlight and indirect sky. We start by estimating
the scene illumination and coarse geometry using state-of-the-art
outdoor illumination [Zhang et al. 2019b] and ground plane estima-
tion [Hold-Geoffroy et al. 2018] techniques. We use these estimates
to drive the rendering of the synthetic foreground object, which we
then compute a rough composite onto the background image using
an IBL approach based on Debevec’s differential rendering [De-
bevec 1998] but with adaptations to handle the unknown spatially-
varying scene illumination and ground plane BRDF. Our strategy
is to correct errors in this rough composite, using an image-space
neural network, informed by a new and improved image formation
model and additional input maps generated by the renderer.

Specifically, we refine the foreground object’s cast shadow using
a multiplicative gain map, estimated by our new network, that cor-
rects both color and intensity discrepancies between the rendered
shadow and the real shadows in the background, and seamlessly
blends overlapping shadows when they occur. This simplifies the
network’s task, by relieving it from predicting high-frequency im-
age details already present in the input composite, thus regularizing
inference. To synthesize plausible shadows on the virtual object,
we also train the network to estimate shadowed areas in the back-
ground image. This gives us a shadow mask, which we back-project
from the estimated ground plane onto the object according to the
available sun direction. This results in 3D-consistent shadow cues in
image-space, similar to the “shadow displacement map” of Chuang
et al. [2003]). We train our proposed network with a large variety of
scene layouts, illumination conditions, and shadow and occlusion

patterns, using a combination of real datasets and synthetic data
rendered using a physically-based path tracer [Developers 2023].

Unlike previous works that only focused on the problem of cast-
ing virtual shadows onto the background scene [Chuang et al. 2003;
Liu et al. 2020; Sheng et al. 2021], our method is, to the best of
our knowledge, the first work to holistically tackle the problem of
compositing all shadows for virtual object compositing. Compared
to several baselines, including image-to-image translation and us-
ing a state-of-the-art shadow detector, our new image formation
model and conditional generation approach lead to much more
realistic, artifact-free composites. We demonstrate state-of-the-art
compositing results across a wide range of real photographs.

2 RELATEDWORK
We limit our discussion to works on virtual object compositing [De-
bevec 1998; Nakamae et al. 1986] over a single outdoor image,
focusing on shadow estimation issues.

Single image outdoor illumination estimation. Compositing a vir-
tual object such that it realistically blends with the background
requires an accurate estimate of backdrop’s lighting conditions [Car-
valho et al. 2015; Zhu et al. 2015]. For outdoor images, Lalonde et al.
[2009] first proposed to estimate the sun visibility and direction
by extracting cues such as shadows, sky appearance and shad-
ing on vertical surfaces like buildings. Later, Hold-Geoffroy et al.
[2017] proposed to learn a mapping between a limited field of view,
low dynamic range (LDR) outdoor image and its corresponding
illumination, as modeled by the physically-based Hošek-Wilkie
sky model [Hošek and Wilkie 2012, 2013]. Follow-up works han-
dle both indoor and outdoor environments [LeGendre et al. 2019],
use learned sky models [Hold-Geoffroy et al. 2019; Yu et al. 2021],
and can estimate spatially-varying lighting representations [Wang
et al. 2022; Zhu et al. 2021b]. Our method draws inspiration from
Zhang et al. [2019b], who rely on the Lalonde-Matthews (LM)
model [Lalonde and Matthews 2014], which decomposes outdoor
illumination in two components: sun and sky. Although simpler
than physically-based models, the LM sky model is more expressive,
and can thus represent more diverse weather conditions.

Shadow detection and removal. Early shadow detection methods
were initially based on photometric and geometric cues [Sanin et al.
2012]. Later, machine learning methods used MRFs [Panagopoulos
et al. 2011; Zhu et al. 2010], CRFs [Guo et al. 2013] or SVMs [Lalonde
et al. 2010] to estimate shadows. More recently, deep learning
methods pushed the accuracy of shadow detection. Vicente et al.
[2016] advocates using large-scale approximate datasets during
training, while automatically correcting ground truth errors, and
post-processing the estimation using a patch CNN. Le et al. [2018]
introduced a GAN-based approach for shadow detection, improving
robustness by training against an adversarial shadow attenuator.
Zhu et al. [2018] paired recurrent attention residual modules with a
pyramid feature network to attain state-of-the-art shadow detection
accuracy. Wang et al. [2021, 2020a] developed a method to detect
individual shadow instances. Beyond detection, methods were also
proposed to remove shadows end-to-end using CNNs, either by
adding semantic cues [Qu et al. 2017], jointly learning detection
and removal [Wang et al. 2018], and decomposing the image using
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Figure 2: Overview of our shadow compositing method. We train a generator network that takes as input a background image
and a target shadow mask—corresponding to the virtual object shadow region, to produce two outputs: 1) a detected shadow
mask, corresponding to the detected shadows in the input background image; and 2) a gain map, to adjust the shadowed regions.
These outputs are combined to produce a realistic composite (far right) which realistically blends the rendered shadows with
those already present in the scene.

a linear illumination transform [Le and Samaras 2019]. More re-
cently, MTMT [Chen et al. 2020] was proposed for semisupervised
shadow detection. This method combines training on unlabeled
data with a teacher-student approach to provide state-of-the-art
shadow detection accuracy and has become popular due to its ro-
bustness to general scenarios and public availability. Since then,
many other approaches have also been proposed [Hu et al. 2021;
Zhu et al. 2021a, 2022], including a technique to perform shadow
removal aided by shadow generation [Liu et al. 2021].

Compositing with deep learning. Deep learning based methods
were developed to harmonize composites [Tsai et al. 2017; Zhan
et al. 2020], generally by attempting to balance the colors of in-
serted objects. Recently, GAN-based approaches were developed
to determine the ideal location of inserted objects as well as their
color [Azadi et al. 2020; Chen and Kae 2019; Lin et al. 2018], but
none of these methods deal with cast shadows. Of note, Nicolet
et al. [2020] handle shadows but require a multiview image set.

Image relighting and shadow generation. Relighting involves re-
moving, altering and creating new shadows. Facial relighting for
example, can enhance a portrait by removing distracting cast shad-
ows on a subject’s face, or simulate a more pleasing diffuse illu-
mination [Futschik et al. 2023; Nestmeyer et al. 2020; Pandey et al.
2021; Sun et al. 2019; Wang et al. 2009, 2020b; Zhang et al. 2020;
Zhou et al. 2019]. Relighting algorithms for generic scenes typically
use multi-view stereo (MVS) to model the scene geometry, using
which they estimate existing shadows or render new ones [Duchêne
et al. 2015; Philip et al. 2019, 2021]. Relighting approaches have
also been demonstrated on single images [Griffiths et al. 2022] and
even applied to screen-space shading [Nalbach et al. 2017]. Closest
to our work, shadow generation recently emerged as an impor-
tant relighting sub-problem in the literature [Liu et al. 2020; Sheng
et al. 2022, 2021, 2023]. It enables shadow and reflection synthesis
directly from 2D composites, without explicit 3D geometry esti-
mation. However, their results are limited to scenarios where the
synthetic object is deliberately placed away from shadows already

present in the background, which sidesteps the problem of virtual
and real shadows interaction we seek to solve.

3 BACKGROUND: DIFFERENTIAL IMAGE
COMPOSITING

Our goal is to produce a realistic composite of a virtual 3D object
onto a background photograph as in fig. 1c. We start by reviewing
differential image compositing [Debevec 1998].

To composite a 3D object onto a ℎ ×𝑤 color image B ∈ R3ℎ𝑤 ,
Debevec [1998] proposed a two-step approach. First, a model of the
local scene is constructed (i.e., an approximation of the real scene
geometry surrounding the virtual object). This is typically a simple
ground plane acting as a shadow receiver. Second, the composite
is computed using two renderings of the local scene: one with the
virtual object O ∈ R3ℎ𝑤 , and one without N ∈ R3ℎ𝑤 . Given a mask
M ∈ [0, 1]ℎ𝑤 with 1 indicating the object, the composite C can be
obtained using the differential image rendering equation:

C = M · O + (1 −M) · (B + 𝑐 (O − N)) , (1)

where · is the element-wise product of image tensors, and 𝑐 is a
scalar adjusting for the desired shadow strength to compensate for
the unknown ground material BRDF (required by Debevec’s [1998]
original method).

This formulation enables casting a virtual object’s shadow onto
the background, but it does not model interactions between virtual
and real shadows as shown in fig. 1b. This leads to two shortcom-
ings: 1) shadows cast by the virtual object do not blend seamlessly
with existing shadows in the background, as even tuning 𝑐 cannot
compensate for the overlap between the virtual and real shadows;
and 2) occluders in the background scene (i.e., parts of the scene’s
geometry whose shadows are visible in the background photo), can-
not cast shadows onto the virtual object. Our proposed approach,
which we discuss next, addresses these shortcomings and lets us
realistically model interactions between virtual and real shadows.
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(a) ground plane estimate (b) shadow warping

Figure 3: Warping ground shadows. Given a horizon line
estimate for the background image, we approximate camera
extrinsics and a coordinate system for the ground plane (a).
We then warp the ground plane, unprojecting pixels along
the sun direction onto the virtual 3D object, simulating an
occlusion of sun rays (b). Image by Matthias Groeneveld.

4 SHADOW-AWARE IMAGE COMPOSITING
Our approach has two main goals: 1) matting the shadows cast
by the virtual objects with the existing shadows present in the
image; and 2) casting shadows onto the virtual object (by modifying
shadows cast by real occluders present in the background photo).

Our proposed compositing pipeline achieves this using a gen-
erator network that learns to simultaneously: 1) predict a shadow
gain map, which we use to blend synthetic shadows with their
surroundings; and 2) detect existing shadows on the ground, which
can be back-projected to shade the synthetic object.

Like Debevec [1998], our method relies on prior knowledge of
the lighting conditions and camera parameters of the input image.
As is commonly the case (e.g., [Hošek andWilkie 2013; Lalonde and
Matthews 2014], we assume an outdoor lighting model composed
of two light sources: one directional (sun) and one ambient (sky).
Additionally, we assume that a ground plane capable of receiving
shadows is at least partially visible in the background image.

4.1 Method overview
Our novel compositing pipeline is illustrated in fig. 2. At its core
is a generator network G which accepts as input a low dynamic
range RGB background image B as well as an indicator map of the
virtual shadows V ∈ [0, 1]ℎ𝑤 to be matted with the background.
The generator outputs a linear-RGB gain map G ∈ [0, 1]3ℎ𝑤 and
a single-channel map of the detected soft shadows in the image
S ∈ [0, 1]ℎ𝑤 such that (G, S) = G(B,V). Here, a value of 1 (resp. 0)
in V and S indicate a fully shadowed (resp. fully sunny) pixel.

The shadow gain G is then used to blend the virtual shadow
with the real shadows already present in the background image
(see sec. 4.2, fig. 2 top row) to obtain BS ∈ R3ℎ𝑤 . In addition, the
detected shadows are back-projected onto the virtual 3D object to
cast real shadows onto the virtual object (see sec. 4.3, fig. 2 bottom
row) to obtain OS ∈ R3ℎ𝑤 . One last render of the virtual scene’s
shadow catcher is performedwith the sky-only illuminationBsky, to
capture shading effects such as ambient occlusion onto the ground
(caused by the virtual object), further darkening ground regions

close to the object. Finally, these intermediate images are merged
to obtain the final composite

C = M · OS + (1 −M) · (BS · Bsky) . (2)

This equation effectively replaces the user-defined shadow intensity
gain 𝑐 from eq. (1) with a spatially-varying shadow map, which our
model generates without user interaction.

4.2 Blending virtual shadows with the
background image

Ideally, we could obtain the background with blended shadows
by simply applying our predicted gain G to the input background
image, i.e., BS = B · G. However, we observed that a single forward
pass through G still often results in a mismatch in overall shadow
intensity. We attribute this to the fact that for the results to “look
right”, the network must produce pixel-perfect shadows, i.e., even
subtle deviations are immediately visible to the human eye. To
alleviate this issue, we use a refinement procedure to adjust the
predicted gain map, as illustrated in fig. 2 (top row).

Gain map refinement. We correct the gain map G using a global
scale factor 𝑓 ∈ R, so that the average intensity of the generated
shadows matches that of the background shadows on the region
where they overlap:

Grefine = (1 − S) · 𝑓G + S · G , (3)

𝑓 =
𝜇 (S·V·B)

𝜇 ((1 − S) ·G·V·B) + 𝜖
, (4)

where 𝜇 (·) denotes the mean operator over non-zero pixels of the
value channel after conversion from RGB to HSV, and 𝜖 is a small
value to prevent division by zero. Pixels with intensity below 0.1
are discarded in eq. (4) to avoid noise.

Our final background with blended shadows is thus given by
BS = B · Grefine. Alternatively, this ratio could also be computed
on each color channel separately to account for color mismatches,
in which case 𝑓 ∈ R3. A similar procedure was used to perform
shadow removal [Le and Samaras 2022], relighting [Griffiths et al.
2022], and intrinsic image decomposition [Duchêne et al. 2015].

4.3 Casting real shadows on the virtual object
In order to cast real shadows on the virtual object, it would be intu-
itive to train a network on the appearance of shaded objects. How-
ever, such a dataset would be very hard to capture. To bridge the
reality gap, we instead leverage shadow removal data (see sec. 5.3)
on a ground-only formulation. In this case, to obtain cast shadows,
we first warp the detected shadows S onto the 3D object according
to the sun direction (obtained from the lighting model) and the
ground plane equation (obtained from the camera parameters). We
obtain the shadow warping operator 𝜑 by following Chuang et
al. [2003], illustrated in fig. 3, to obtain the warped shadow map
𝜑 (S). Real shadows are then projected onto the object using

OS = Osun · (1 − 𝜑 (S)) + Osky , (5)

where Osun (resp. Osky) are renderings of the virtual object using
the sun (resp. sky) lighting model only (see fig. 2, bottom row).

It is worth noting that in our current formulation only the ground
plane is used, so cast shadows do not get darker as they get closer
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Figure 4: Overview of our training procedure. This formulation allows us to train our approach on real images from existing
shadow removal datasets. Our network is trained using a combination of 3 loss functions (ℓ∗, see text).

to (unknown) scene geometry (see fig. 6, last row). On the known
geometry of the ground plane, this effect is achieved through Bsky
(c.f. sec. 4.1).

5 TRAINING THE SHADOW GENERATOR
We now describe our model architecture and training procedure.

5.1 Network architecture
For the generator network, we use a UNet [Ronneberger et al. 2015]
with fixed update initialization [Zhang et al. 2019a] (implementation
from [Griffiths et al. 2022]) and a simple patch discriminator D
[Isola et al. 2017]. The network takes as input a 4-channel image
concatenating the virtual shadow mask V and the background B.
It produces a 4-channel output representing the shadow gain G
and the mask of detected background shadows S. All images are
processed with patches of 128 × 128 spatial resolution.

5.2 Training objective
As illustrated in fig. 4, we train our model to minimize the sum of
three loss functions: ℓ𝑠 + ℓ𝑐 + ℓGAN. First, ℓ𝑠 compares the detected
shadows S to a ground truth background shadow mask S∗:

ℓ𝑠 = | |V · (S − S∗) | |1 . (6)

Both shadows are masked by the virtual shadowmask V because, to
handle interactions, we only need to accurately detect real shadows
which overlap with the virtual ones. The second loss, ℓ𝑐 , compares
the resulting matting BS with the ground truth shaded image B∗S:

ℓ𝑐 = | |V · (BS − B∗S) | |1 . (7)

As before, images are masked by the virtual shadow mask V. Lastly,
we use a conventional GAN loss ℓGAN on BS and B∗S. The generator
and discriminator are trained simultaneously.

5.3 Datasets
We leverage different datasets including a mix of synthetic and
real data to train our model. For all previously published datasets,
we employ the provided train/test splits. During training, 10% of
the training set is further separated as a validation set. The test
sets were only used for benchmarking the final models (as seen
in tab. 1 and tab. 2). We also augment data by flipping the images
horizontally.

Shadow removal. We leverage shadow removal datasets to train
our shadow generation network, as illustrated in fig. 5. These
datasets are composed of pairs of images with and without shadows
Iw and Iwo resp., combined with a shadow mask Im. We generate
the background B and virtual shadow V images by generating a
binary pixel mask Z, consisting of a random subset of the shadow
region in Iw. This random subset is obtained by subtracting two
randomly-generated masks, each containing 15 overlapping ellip-
soids with random translation, rotation, and scale. These masks
are subtracted one from the other and the result is blurred with a
Gaussian kernel, then masked by Im. The resulting mask Z is then
used to generate B =Z·Iw + (1−Z)Iwo, and we set V = Im.

During training, these augmentations are made online. In total,
we randomly mixed: the originals (the task of full shadow genera-
tion, enforcing shadow color), the augmented subset of shadows
(as described above, for the task of shadow matting), border-less
subsets (the original mask eroded with a square kernel then blurred
with a Gaussian kernel, to emphasize soft edge generation), shadow
edges (the inverse of a border-less mask, limited to the original
shaded mask, for matting the entire contour), no-insertions (a blank
mask with a shadow-less input and target, to punish insertions
out of the desired region), and no-changes (a subset mask and a
fully-shaded input and target, to further punish double shadows).
Examples can be found in the supplemental.

Specifically, we use the following datasets: ISTD [Wang et al.
2018] (adjusted by [Le and Samaras 2019]), DESOBA [Hong et al.
2022], and SRD [Qu et al. 2017] (binary shadow masks from Cun et
al. [2020], which we refined with a median filter).

Shadow detection. We also leverage the SBU [Vicente et al. 2016]
and UCF [Zhu et al. 2010] shadow detection datasets. These datasets
contain images with labeled shadow regions, but no non-shadow
counterparts, so they cannot be used for matting evaluations.
Nonetheless, SBU’s over 4000 samples and UCF’s roughly 100 pro-
vide great camera and scene variation, which we used to train for
shadow detection and punish double shadows. To do this, we gen-
erate network input masks as for the shadow removal datasets and
use the shaded images as input and target.

Synthetic soft shadows dataset. Even though the approaches de-
scribed above allow us to train our network using real data, it
remains the case that high-quality shadow matting data samples
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(a) Iw (b) Iwo (c) Im (d) Z (e) B

Figure 5: Adapting a real shadow removal sample for shadow
compositing. From input images (a) with shadows Iw, (b) with-
out shadows Iwo and (c) mask Im available in shadow removal
datasets, we generate (d) a random mask Z which is used to
create (e) a background image B that can be used for training.
The virtual shadows image is simply V = Im. This example is
taken from the ISTD dataset [Wang et al. 2018].

such as these are very few (the only datasets with truly accurate,
masked shadow and shadow-less pair annotations are DESOBA and
ISTD, totaling a little over 2000 training samples). Therefore, we
supplement our model with 3000 samples of synthetic data, intro-
ducing a new dataset of synthetically-generated composite images.
To generate this dataset, we follow a procedure similar to [Zhu
et al. 2021b] and leverage the Blender SceneCity plugin [Couturier
2023] which generates high-quality urban scenarios. To augment
the diversity in ground textures, we randomly sample physics-based
textures from Polyhaven [Tuytel et al. 2023]. A Stanford bunny ob-
ject is inserted in the camera field of view with random rotation,
translation, and scale, creating a wide variety of shadow patterns
when combined with different sun directions. The scene is illumi-
nated by a random HDR environment map from the Laval Outdoor
HDR Dataset [Hold-Geoffroy et al. 2019], which contains synthetic
annotations for Lalonde-Matthews [2014] sun and sky parameters.
A random amount of flying occluders, in the form of multiple geo-
metric primitives, is rendered outside of the camera field of view, in
random distances along the line between the object and the sun. The
occluders are rotated at random and scaled so as to not completely
cover the object. This creates multiple soft shadow interactions,
unique to every frame. The cast shadow ground truths are obtained
through a shadow catcher plane, rendered after disabling the sky
element in the LM HDRI, leaving the sun as the only illuminant.
For this dataset, flipping was the only augmentation performed.

To our knowledge, our real-augmented and synthetic datasets
are the only ones to contain soft shadow annotations, as well as
shadow intersections and overlaps. All our augmented, adjusted,
and generated datasets, annotations, and augmentation code are
publicly available. Samples are also available in the supplemental.

5.4 Implementation details
Handling multiple resolutions. Training GANs on higher resolu-

tions may lead to instabilities and incur both prohibitive training
times and memory requirements. However, to insert virtual objects
convincingly we need considerable resolution—a common limita-
tion for deep learning approaches. We circumvent this issue by
using a sliding window approach, dubbed patch-based local aver-
aging, over high-resolution images. The network G is executed on
128 × 128 patches, and the final output for each pixel is the average
over that pixel’s estimation value in all overlapping patches. To
evenly sample all pixels, we pad the image with 128 pixels on each
border, using a reflect pattern. While this approach scales linearly

with the number of pixels to be detected, the patches are indepen-
dent, so the algorithm can be sped up by batching the patches on
the GPU (e.g. we use a batch size of 256 on a 12GB RAM NVIDIA
RTX 2080 Ti GPU, with an inference time of approximately 20ms
per batch). When doing so, we obtain shadow generation results
at resolutions over full HD (1920×1080), whereas state-of-the-art
shadow detection tends to shrink the image to fit the network, re-
sulting in loss of detail (see fig. 7). We further propose to speed
up the algorithm by adding a stride to the patch-averaging sliding
window. We have found a stride of 16 to obtain sufficient shadows
while reducing the computing time from minutes to seconds per
image.

Lighting and camera parameters. We use off-the-shelf automatic
algorithms to estimate lighting (Zhang et al. [2019b]) and cam-
era parameters (Hold-Geoffroy et al. [2018]) from the background
image.

6 EVALUATION
6.1 Compositing

Qualitative results. Fig. 6 shows qualitative compositing results
compared against traditional compositing [Debevec 1998] and a
strong baseline based on the state-of-the-art MTMT shadow detec-
tor [Chen et al. 2020]. This baseline utilizes the MTMT detection
SMT, creates a gain map GMT = SMT/2 + 1/2, then uses the same
refinement, warping, and compositing as our main approach.

We observe that traditional compositing exhibits issues when
virtual and real shadows should interact. In contrast, the MTMT
baseline produces much improved results, thanks to our composit-
ing equations (sec. 4), but still yields visible shadow boundaries
since it was not trained to take the penumbra into account. Our
results (rightmost column) show better overall matting and fewer
visible shadow seams. Moreover, our gain map preserves texture
details more accurately than the baseline plain multiplier, e.g., the
darker lines on brick textures (fig. 6, last row).

Quantitative results. To compare our method, we extend our
shadow removal augmentation procedure (see fig. 5) to the test
sets of DESOBA and ISTD. An example of a resulting augmented
sample (from the test set) can be seen in fig. 5. All augmented inputs
must have at least 20% of the original shadow and no more than
80%, to guarantee blending. On DESOBA, 9 samples were discarded
for the total shadows covering less than 0.5% of the image. As for
SRD, the masks are not meant for evaluations, as the considerable
inaccuracies would overly punish correct detections and mattings
(more details in the supplemental). This evaluation includes two
additional baselines: a variation of our model that aims to generate
the RGB ground composite directly (“comp. net”) and a variation
that takes MTMT detection as input and tries to estimate just the
gain map to blend the shadows (“gain net”), as opposed to learning
the tasks jointly (“ours”). We report the SSIM, PSNR, and L1 metrics.

Tab. 1 shows that the refinement process benefits all approaches
and confirms that learning joint detection and matting is the most
promising path. Due to the lower resolution and overall larger
shadow areas in ISTD, our model without local averaging performs
best. However, for the larger images inDESOBA, our local averaging
configuration outperforms every other approach by a considerable
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Table 1: Quantitative results for shadow compositing. We
quantitatively evaluate our method on shadow renders on
SSIM, PSNR (dB), and L1 error. Our method is compared to
3 strong baselines (“MTMT”, “comp. net” and “gain net”),
see text. Variants on each method are also evaluated. Colors
indicate best , medium and worst performance for each
method independently, and bold-underlined the best perfor-
mance across all.

ISTD [2018] DESOBA [2022] averages
SSIM↑ PSNR↑ L1↓ SSIM↑ PSNR↑ L1↓ SSIM↑ PSNR↑ L1↓

MTMT 0.925 27.596 6.505 0.979 32.184 1.569 0.952 29.890 4.037
+ crf 0.925 27.582 6.457 0.979 32.148 1.564 0.952 29.865 4.010
+ val. scale 0.925 29.523 5.436 0.981 34.434 0.940 0.953 31.978 3.188
+ rgb scale 0.925 30.120 5.173 0.981 34.402 0.923 0.953 32.261 3.048

comp. net 0.873 23.459 10.054 0.967 32.061 1.703 0.920 27.760 5.878
+ pbla 0.925 29.031 5.816 0.981 34.564 1.149 0.953 31.797 3.482
+ val. scale 0.928 30.047 5.364 0.982 35.310 0.965 0.955 32.679 3.165
+ rgb scale 0.928 30.229 5.284 0.982 35.304 0.960 0.955 32.767 3.122

gain net 0.924 29.263 5.695 0.982 34.351 1.007 0.953 31.807 3.351
+ pbla 0.920 28.237 6.086 0.980 33.931 1.094 0.950 31.084 3.590
+ val. scale 0.924 29.682 5.436 0.981 34.297 0.935 0.953 31.990 3.185
+ rgb scale 0.925 29.923 5.318 0.981 34.325 0.916 0.953 32.124 3.117

ours 0.930 30.342 5.008 0.982 34.784 0.994 0.956 32.563 3.001
+ pbla 0.928 29.857 5.347 0.982 35.074 0.958 0.955 32.465 3.152
+ val. scale 0.929 30.220 5.226 0.983 35.707 0.818 0.956 32.964 3.022
+ rgb scale 0.929 30.321 5.166 0.983 35.720 0.804 0.956 33.020 2.985

Table 2: Quantitative results for shadow detection. We com-
pare our method (without and with the patch-based local
averaging, pbla) to the MTMT baseline (without and with the
CRF refinement) on two datasets: ISTD [Wang et al. 2018]
and DESOBA [Hong et al. 2022], the last set of columns shows
the average over the two datasets. We report the precision on
shadow (S) and non-shadow (NS) regions as well as the BER
metric. Colors indicate best and worst performance for
each method independently, and bold-underlined the best
performance across all.

ISTD [2018] DESOBA [2022] averages
S↓ NS↓ BER↓ S↓ NS↓ BER↓ S↓ NS↓ BER↓

MTMT 12.114 0.162 6.138 17.676 0.066 8.871 14.895 0.114 7.505
+ crf 13.360 0.119 6.740 21.136 0.056 10.596 17.248 0.088 8.668

ours 3.742 0.671 2.207 9.273 0.207 4.740 6.508 0.439 3.473
+ pbla 7.718 0.389 4.053 4.785 0.143 2.464 6.251 0.266 3.258

margin. It is worth noting that despite the large amount of ground
texture variation present in DESOBA, the RGB scaling refinement
step (eq. (4)) outperforms other approaches in most cases.

Further validation can be found in the supplemental, including
per-loss and per-dataset ablations, cross-dataset validations, and
samples of softer shadow detection and overcast scenarios.

6.2 Shadow detection
Our compositing model needs a predicted mask of the background
shadows, which effectively gives us a shadow detector as a byprod-
uct of our training strategy. While generic shadow detection is

complex and out of our scope, our network is trained to perceive
detailed shadows (including soft edges) on a wide variety of outdoor
ground plane textures, so we evaluate this capability here.

Fig. 7 shows that our method tends to produce much more finer-
grained results than the current state-of-the-art in shadow detec-
tion [Chen et al. 2020], correctly identifying several small regions in
the shade. However, regions outside the ground plane (e.g., the sky)
are often misclassified since those receive little to no supervision
signal during training. This is not a problem for our use case, but
limits the applications of our soft shadow detector. Quantitatively,
tab. 2 shows our method outperforms the MTMT baseline signifi-
cantly in the true shadow regions (“S”) and on the Balanced Error
Rate (BER) metric while assigning slightly more false positives,
i.e., fewer true negatives (“NS”). This evaluation was performed on
the same images as in sec. 6.1, measuring how well the shadows
were detected so that matting could be performed. This result from
MTMT is expected because shadow detection datasets rarely have
such a level of detail in their annotations, and none possess soft
shadow edge annotations. Moreover, MTMT’s resizing operations
to the network resolution (416×416) further decrease detail. Tra-
ditional detection also emphasizes connected bodies of shadow
to reduce noise and better match the simpler dataset annotations,
at the expense of detail (e.g., CRF post-processing in MTMT). We
also observe the patch-based local averaging (“pbla”, see sec. 5.4)
having a mixed impact on shadow detection. However, it allows
the method to be applied to high-resolution images.

6.3 Limitations
Although it proposes a substantial improvement in shadow com-
positing over previous techniques, our method still bears some lim-
itations. Soft shadow detection (penumbra estimation) and ground
reflectance estimation are very ill-posed problems to solve from a
single low dynamic range outdoor image with completely unknown
lighting, geometry, material, and camera properties. Notably, our
method expects mostly diffuse ground planes. More complex ge-
ometries or specular materials would likely not be handled well.
The same applies to glass objects and caustics, which could re-
sult in incoherent matting. Additionally, shadows back-projected
onto the object using the warp operator 𝜑 might be abruptly cut
if they extend beyond the edges of the background image. This
could be resolved using in-painting networks to extend the image.
Another potential weakness is that our shadow gain map refine-
ment step assumes the shadow intersection region to be reliable,
but this might not hold in rarer situations where the ground texture
changes abruptly. Finally, the visual quality of our results depends
on the camera and lighting estimation techniques we receive as
input (though they can be replaced by manual inputs).

7 CONCLUSION
In this paper, we introduce a deep learning based method that
performs virtual object compositing in a real background from a
single image, focusing on complex shadow interactions in outdoor
scenes. In our method, we consider both the shadows cast by the
virtual object onto the real scene and vice-versa. Our key insight
is to leverage a neural network to estimate spatially-varying cor-
rective maps for newly-proposed compositing equations. Namely,
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we estimate soft shadow edges by jointly learning detection and
matting, also leveraging image queues to compensate for the miss-
ing knowledge of the ground’s reflectance or the scene’s indirect
lighting, all aspects which determine the shadow color. Another
key point of our approach is to recognize that the sun, as the main
light source, can be used to warp the shadow detection into a direct
light mask for the virtual object, shading it instead. In addition, our
method can be applied as-is at large resolutions, obtaining finer-
grained ground shadows than the state-of-the-art. Our approach
circumvents the lack of available data for training by re-purposing
and augmenting existing shadow removal and detection datasets,
as well as our own synthetic dataset, resulting in large amounts
of automatically-generated, detailed annotated samples—both real
and synthetic. Though no existing approaches propose to solve
this specific problem, we have shown through several experiments
that our proposed method performs the proposed task with greater
success than baselines based on existing methods. We hope our
method can help pave the way to more pleasant virtual compositing
and more immersive AR experiences. In the future, we hope our
method can be extended to video inference to increase its accuracy
and temporal consistency. We also hope it can be expanded to differ-
ent types of challenging ground materials, non-planar geometries,
and more complex light effects such as caustics and indoor scenes.
Finally, we hope our GAN-based shadow detection through matting
and our re-purposing of scarce real data can serve as inspiration
for future works on shadow detection, removal, and matting.
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Figure 6: Qualitative results on test dataset images. From an input image (left col.) never seen in training, we composite a
virtual object using the traditional pipeline [Debevec 1998] (2nd col.), which exhibits issues like double shadows on the ground
and absent shadows on the virtual objects. Using our spatially-varying compositing equation (3rd, 4th column) yields much
more plausible results. However, MTMT [Chen et al. 2020] (3rd col.) results have visible shadow boundaries in the composite
(see insets). In contrast, our results (rightmost) display the most plausible shadow interactions.
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Figure 7: Shadow detection. Our model (2nd row) produces a more detailed soft shadow map than the current state-of-the-art
shadow detection method [Chen et al. 2020]. Note that our method does not provide training signals for above-ground pixels
such as the sky, so the method will produce unpredictable results in those regions. This is not an issue for shadow compositing
on ground surfaces, as can be seen in the last 3 rows, with non-ground regions segmented in red . Moreover, in all results, we
observe that our method extracts more shadow details. Our algorithm with stride 16 was used (see sec. 5.4). All samples were
taken from our “in the wild” set of images found online (unseen during training) available under free Pexels license. Author
credits: Asad Photo Maldives (a, h), Myburgh Roux (b), Adrien Olichon (c), Polina Chistyakova (d), Marta Dzedyshko (e), Jasper
de Vreede (f), and Milica Vitor (g).
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