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1 IMPLEMENTATION DETAILS
As stated in the main paper, for the generator network we use
a UNet [Ronneberger et al. 2015] with fixed update initialization
[Zhang et al. 2019] (implementation from [Griffiths et al. 2022]) and
a simple patch discriminator [Isola et al. 2017]. Diagrams of our
generator can be found in the supplemental of Griffiths et al. [2022].
In the PyTorch implementation, our generator has as input 4

channels (except for the baseline variation that received MTMT’s
detection as input, in which case it received 5). The output has 4
channels: 3 for the gain map and 1 for the detection. The output
activation function is a sigmoid, with intermediary activation func-
tions as ReLU. The UNet has 5 down layers, 3 identity layers, and
6 bottleneck layers, with a maximum amount of features of 256.
All skip links are enabled. For our discriminator, a diagram can be
found in fig. 1.
Our generator and discriminator were trained using the Adam

optimizer (𝛽1 = 0.9, 𝛽2 = 0.999) with a learning rate of 1𝑒 − 4. Our
generator losses had weights 5𝑒 − 1, 1𝑒2, 3𝑒1 for ℓ𝐺𝐴𝑁 , ℓ𝑐 , and ℓ𝑠
respectively. Each model was trained for around 1000 epochs.

2 EXTRA EVALUATIONS
To complement the evaluations conducted in the main paper, we

include the following tests in tab. 1 and figs. 2 and 3:
• Ablation tests on loss functions: in tab. 1, we evaluate how
the shadow detection loss ℓ𝑠 and the adversarial loss ℓGAN
influence the performance of our model when combined with
the L1 ground loss ℓ𝑐 . More discussions in sec. 2.1.

• Ablation tests on training datasets: in tab. 1, we eval-
uate how our synthetic dataset bridges the real-synthetic
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Fig. 1. Discriminator architecture. As implemented in PyTorch.

domain gap and measure the impact of supplementation with
shadow removal and shadow detection data. More discussions
in sec. 2.2.

• Cross-dataset validation: in tab. 1, we evaluate how models
perform on each test set when trained only on the other
datasets (i.e., we train one model without ISTD, dubbed “no
ISTD”, and another without DESOBA, dubbed “no DESOBA”).
More discussions in sec. 2.3.

• Softer shadow samples: in our work, we showcase seam-
less shadow blending by accurately detecting soft shadow
edge intensities. To investigate further how soft the detected
shadows can be, in figs. 2 and 3, we provide a qualitative
comparison of shadow detection results from our proposed
GAN and from MTMT on real images with softer shadows
(as often found in cloudier weather, turbid atmospheres, or
cast by detailed objects farther from the ground). All images
were unseen during training. More discussions in sec. 2.4.
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ISTD [2018] DESOBA [2022] averages
SSIM↑ PSNR↑ L1↓ S↓ NS↓ BER↓ SSIM↑ PSNR↑ L1↓ S↓ NS↓ BER↓ SSIM↑ PSNR↑ L1↓ S↓ NS↓ BER↓

ℓ𝑐 only 0.924 28.696 6.072 9.526 0.934 5.230 0.981 34.177 1.222 9.133 0.278 4.705 0.952 31.437 3.647 9.329 0.606 4.968
+ ℓ𝑠 0.929 29.952 5.222 3.197 0.698 1.948 0.983 35.689 0.844 3.481 0.211 1.846 0.956 32.821 3.033 3.339 0.454 1.897
+ ℓGAN (ours) 0.929 30.321 5.166 7.718 0.389 4.053 0.983 35.720 0.804 4.785 0.143 2.464 0.956 33.020 2.985 6.251 0.266 3.258

synthetic only 0.908 23.773 8.959 8.479 5.326 6.902 0.977 31.104 1.719 6.572 1.252 3.912 0.943 27.439 5.339 7.526 3.289 5.407
+ removal 0.930 30.472 5.115 5.839 0.420 3.130 0.983 35.727 0.846 4.870 0.193 2.532 0.956 33.100 2.980 5.355 0.307 2.831
+ detection (ours) 0.929 30.321 5.166 7.718 0.389 4.053 0.983 35.720 0.804 4.785 0.143 2.464 0.956 33.020 2.985 6.251 0.266 3.258
- synthetic 0.929 30.163 5.195 5.820 0.530 3.175 0.983 35.700 0.831 4.118 0.213 2.166 0.956 32.931 3.013 4.969 0.372 2.670

ours 0.929 30.321 5.166 7.718 0.389 4.053 0.983 35.720 0.804 4.785 0.143 2.464 0.956 33.020 2.985 6.251 0.266 3.258
no ISTD 0.925 29.305 5.569 7.398 0.724 4.061 0.983 35.637 0.835 4.043 0.227 2.135 0.954 32.471 3.202 5.720 0.476 3.098
no DESOBA 0.929 29.858 5.328 3.057 0.915 1.986 0.981 33.809 1.082 1.992 0.563 1.277 0.955 31.834 3.205 2.525 0.739 1.632
MTMT 0.925 30.120 5.173 13.360 0.119 6.740 0.981 34.402 0.923 21.136 0.056 10.596 0.953 32.261 3.048 17.248 0.088 8.668

Table 1. Extra quantitative results for shadow compositing and detection. We quantitatively evaluate our method on shadow renders on SSIM, PSNR
(dB), and L1 error. We also report the precision on shadow (S) and non-shadow (NS) regions as well as the BER metric. Three evaluations are conducted (from
top to bottom): loss ablations, dataset ablations, cross-dataset validation, see text for details. Colors indicate best , medium and worst performance for
each method independently, and bold-underlined the best performance across all.

Here, all models are evaluated with “pbla” and RGB scaling (see
main paper). Results for “ours” and “MTMT” are extracted from the
main paper.

2.1 Loss functions
As can be seen in the top section of tab. 1, the L1 loss on ground

regions ℓ𝑐 by itself is insufficient for both detection and blending.
Adding a shadow detection loss (“+ ℓ𝑠”) improves detection sig-
nificantly. Finally, our GAN loss (“ℓGAN (ours)”) slightly worsens
true positives for detection, but significantly improves compositing
quality and level of detail (fewer false negatives).

2.2 Training data
It is clear from the results in the middle section of tab. 1 that

training with synthetic data alone (“synthetic only”) is unable to
bridge the reality gap. Adding removal data (“+ removal”) provides
the best compositing scores on our test datasets. Adding detection
data (“+ detection”) causes a marginal loss of compositing quality,
but further improves the level of detail of detected shadows by hav-
ing fewer false negatives on pixels near shadow boundaries (i.e.,
avoiding missed shadow seams that create either shadow gaps or
double shadows, due to bad soft edge estimation). This is further
confirmed by its superior detection performance on the DESOBA
dataset, which is more detailed and realistic (i.e., consisting of com-
mon photos instead of careful single-shadow photos like ISTD). For
ISTD’s shadows (which are large, connected, and coarse), downsam-
pling the input proved to be the best option (see main paper).
Finally, removing just the synthetic data (“- synthetic”) caused

a loss of compositing quality and shadow detail, in exchange for
slightly fewer false positives. For our intended task, this trade-off
is undesirable. We hypothesize that this behavior arises from our
synthetic soft shadows ground truths, resulting in sharper estimated
shadow edges without synthetic data (undesirable for seamless
shadow compositing).

2.3 Cross-dataset validation
The bottom section of tab. 1 shows cross-dataset validation results.

For both datasets (ISTD and DESOBA) in tab. 1, it can be seen that
our proposed model (“ours”) surpasses the models trained with less
data (“no ISTD” and “no DESOBA”), even when those were trained
in-domain, with the training set of the same dataset being evaluated.
This indicates that our model is generalizing as expected (i.e., not
overfitting to individual distributions). Both our models trained with
less data are outperformed byMTMT,whichwas also expected, since
MTMT’s publicly-available model was trained using a rather large
number of image sources (including ISTD), while ours relies heavily
on the two smaller shadow removal datasets, especially DESOBA’s
multiple instances per image (each separately-annotated shadow
instance forms multiple augmented samples).
Interestingly, the model without DESOBA (“no DESOBA”) was

the most accurate for true positives in detailed shadows, even in
DESOBA. This was achieved at the expense of a higher number of
false negatives (i.e., missed details and hard-to-classify pixels, like
non-binary edges). This indicates ourmodel without DESOBAmight
be the best choice for users who wish to perform detailed shadow
detection instead of compositing. It is also possible the model is not
necessarily more accurate, but instead learned to match the binary
intensities of shadow annotations better, as it was trained with all
our detection data but less varied shadow removal data, which is
crucial for learning shadow compositing in our pipeline.

2.4 Softer shadow samples
It can be seen in fig. 2 and fig. 3 that our model learned to gen-

eralize the soft shadow annotations from our synthetic dataset, as
showcased in the third column of fig. 4, fig. 5, and fig. 6. This is
a good indication of how to bridge the reality gap for the open
problem of soft shadow estimation. However, as shadows get in-
creasingly softer (fig. 2), especially with overlapping details (fig. 3,
last two rows), we notice the synthetic training data alone might
be insufficient for a completely precise estimation on real images.
This is particularly challenging given unknown surface textures.
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On the other hand, for less extreme cases of softness, our model
can capture considerable detail (e.g., the stick shadows behind the
right-side fence in fig. 3, second row).

Overall, we believe these results highlight the complexity of the
task at hand. While our proposed model is more general, variations
in training data can yield different strengths and weaknesses. The
best pre-trained model to be used for our proposed pipeline, thus,
will depend on the user’s intended application, including required
level of generalization, shadow detail and softness, size of connected
bodies, and tolerance to false positives. Regardless, we hope to
facilitate different specific application needs by making our multiple
pre-trained models available. We also hope our black-box shadow
detector variation (in this work, usedwith, but not limited to,MTMT)
can help future-proof our proposed pipeline.
3 SYNTHETIC SAMPLES
In the following pages, we provide samples of our synthetic dataset
generated using Blender and SceneCity [Couturier 2023]. For our
model, we generated 3000 training samples. However, the variations
are virtually limitless.

4 DATASET SAMPLES
In the following pages, we provide samples of our augmented real
data, as follows:

• Samples from the test sets of DESOBA [Hong et al. 2022] and
ISTD [Wang et al. 2018], augmented for our shadow matting
quantitative evaluation.

• Samples of the shadow erosion live augmentation performed
by our network on ISTD training samples.

• Samples of the SRD [Qu et al. 2017] dataset showing our me-
dian filter adjustment to the binary masks of Cun et al. [2020].

The same matting augmentation algorithm shown in the test set
images was used in the training sets to teach our model shadow
matting, however, that was done online. For the test set evaluation,
we enforced the masks to be no less than 20% of the full shadow
and no more than 80%, with a fixed number of 30 ellipsoids, to
guarantee matting on every frame. During training, the odds of
our model seeing such matting augmentation were roughly 25%,
due to the other augmentations described in the main paper (not
considering the distribution of datasets, out of which real shadow
removal data was roughly 40%, the remainder being roughly 35%
shadow detection and 25% synthetic).

To generate the ellipsoids for the masks in our shadow augmen-
tation algorithm (see the main paper) we generated the ellipsoids
with a random 2D rotation (from 0 to 360 degrees) at random scale

(from 0 to half the image’s resolution), centered anywhere within
the mask. The Gaussian kernel used is 5 × 5 with 𝜎 = 1.

5 EXTRA MATTING RESULTS
In the following pages, we provide samples of matting results mea-
sured during our quantitative evaluation for the following models:

• MTMT (+crf, +value scaling, +rgb scaling)
• compositing network (+pbla, +value scaling, +rgb scaling)
• gain network (+pbla, +value scaling, +rgb scaling)
• ours (+pbla, +value scaling, +rgb scaling)
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input ours MTMT

Fig. 2. Soft shadow detection. Our model (2nd column) produces a more detailed soft shadow map than the current state-of-the-art shadow detection
method MTMT[Chen et al. 2020]. Our algorithm with stride 1 was used (see the main paper). Images from SBU [Vicente et al. 2016].
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input ours MTMT

Fig. 3. Soft shadow detection. Our model (2nd column) produces a more detailed soft shadow map than the current state-of-the-art shadow detection
method MTMT[Chen et al. 2020]. Our algorithm with stride 1 was used (see the main paper). First row from SRD [Qu et al. 2017], last 2 rows from our “in the
wild” set of images found online under free Pexels license. Image credits (top to bottom): Pixabay, and Katya Wolf.
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Fig. 4. Blender dataset samples. From left to right: input image, target image with shadows, virtual object shaded (as reference), input soft shadow mask,
virtual shadow mask to insert, direct light render of the shaded object, indirect light render of the shaded object, object mask.
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Fig. 5. Blender dataset samples. From left to right: input image, target image with shadows, virtual object shaded (as reference), input soft shadow mask,
virtual shadow mask to insert, direct light render of the shaded object, indirect light render of the shaded object, object mask.
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Fig. 6. Blender dataset samples. From left to right: input image, target image with shadows, virtual object shaded (as reference), input soft shadow mask,
virtual shadow mask to insert, direct light render of the shaded object, indirect light render of the shaded object, object mask.
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Fig. 7. Samples from our DESOBA augmentation for shadow matting. From left to right: original shadow-less image, augmented image with partial
shadows (new input), fully-shaded image (ground truth), new input shadow mask (target for shadow detection), full shadow mask (used to ask the models to
insert the remaining shadows and compare to the ground truth).
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Fig. 8. Samples from our DESOBA augmentation for shadow matting. From left to right: original shadow-less image, augmented image with partial
shadows (new input), fully-shaded image (ground truth), new input shadow mask (target for shadow detection), full shadow mask (used to ask the models to
insert the remaining shadows and compare to the ground truth).
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Fig. 9. Samples from our ISTD augmentation for shadow matting. From left to right: original shadow-less image, augmented image with partial shadows
(new input), fully-shaded image (ground truth), new input shadow mask (target for shadow detection), full shadow mask (used to ask the models to insert the
remaining shadows and compare to the ground truth).
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Fig. 10. Samples from our ISTD augmentation for shadow matting. From left to right: original shadow-less image, augmented image with partial
shadows (new input), fully-shaded image (ground truth), new input shadow mask (target for shadow detection), full shadow mask (used to ask the models to
insert the remaining shadows and compare to the ground truth).
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Fig. 11. Samples from our ISTD augmentation for shadow matting. From left to right: original shadow-less image, augmented image with partial
shadows (new input), fully-shaded image (ground truth), new input shadow mask (target for shadow detection), full shadow mask (used to ask the models to
insert the remaining shadows and compare to the ground truth).
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Fig. 12. Samples of our erosion augmentation on ISTD. From left to right: original shadow-less image, border-less augmented input, shadow edge
augmented input, fully-shaded image (ground truth), border-less shadow mask, shadow edge mask, full shadow mask.
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Fig. 13. Samples of our adjustment of SRD masks. From left to right: original shadow-less image, fully-shaded image, provided shadow masks, adjusted
shadow masks. Our adjustment was sufficient for training, since there were over 8000 other accurate masks, but not meaningful for evaluations, since it would
punish multiple correct detections and insert noise in the averages.
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Fig. 14. Matting results for "MTMT baseline" on DESOBA. From left to right: input, matting, +crf, +value scaling, +rgb scaling, ground truth.
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Fig. 15. Matting results for "MTMT baseline" on DESOBA. From left to right: input, matting, +crf, +value scaling, +rgb scaling, ground truth.
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Fig. 16. Matting results for "MTMT baseline" on DESOBA. From left to right: input, matting, +crf, +value scaling, +rgb scaling, ground truth.

18



Supplementary Material
Shadow Harmonization for Realistic Compositing SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia

Fig. 17. Matting results for "compositing network" on DESOBA. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 18. Matting results for "compositing network" on DESOBA. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 19. Matting results for "compositing network" on DESOBA. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 20. Matting results for "gain network" on DESOBA. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 21. Matting results for "gain network" on DESOBA. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 22. Matting results for "gain network" on DESOBA. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 23. Matting results for "ours" on DESOBA. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 24. Matting results for "ours" on DESOBA. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 25. Matting results for "ours" on DESOBA. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 26. Matting results for "MTMT baseline" on ISTD. From left to right: input, matting, +crf, +value scaling, +rgb scaling, ground truth.
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Fig. 27. Matting results for "MTMT baseline" on ISTD. From left to right: input, matting, +crf, +value scaling, +rgb scaling, ground truth.
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Fig. 28. Matting results for "MTMT baseline" on ISTD. From left to right: input, matting, +crf, +value scaling, +rgb scaling, ground truth.
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Fig. 29. Matting results for "compositing network" on ISTD. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 30. Matting results for "compositing network" on ISTD. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 31. Matting results for "compositing network" on ISTD. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 32. Matting results for "gain network" on ISTD. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 33. Matting results for "gain network" on ISTD. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 34. Matting results for "gain network" on ISTD. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 35. Matting results for "ours" on ISTD. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 36. Matting results for "ours" on ISTD. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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Fig. 37. Matting results for "ours" on ISTD. From left to right: input, matting, +pbla, +value scaling, +rgb scaling, ground truth.
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